Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels
نویسندگان
چکیده
[1] We model ruptures on faults that weaken in response to flash heating of microscopic asperity contacts (within a rate-and-state framework) and thermal pressurization of pore fluid. These are arguably the primary weakening mechanisms on mature faults at coseismic slip rates, at least prior to large slip accumulation. Ruptures on strongly rate-weakening faults take the form of slip pulses or cracks, depending on the background stress. Self-sustaining slip pulses exist within a narrow range of stresses: below this range, artificially nucleated ruptures arrest; above this range, ruptures are crack-like. Natural earthquakes will occur as slip pulses if faults operate at the minimum stress required for propagation. Using laboratory-based flash heating parameters, propagation is permitted when the ratio of shear to effective normal stress on the fault is 0.2–0.3; this is mildly influenced by reasonable choices of hydrothermal properties. The San Andreas and other major faults are thought to operate at such stress levels. While the overall stress level is quite small, the peak stress at the rupture front is consistent with static friction coefficients of 0.6–0.9. Growing slip pulses have stress drops of 3 MPa; slip and the length of the slip pulse increase linearly with propagation distance at 0.14 and 30 m/km, respectively. These values are consistent with seismic and geologic observations. In contrast, cracks on faults of the same rheology have stress drops exceeding 20 MPa, and slip at the hypocenter increases with distance at 1 m/km.
منابع مشابه
Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 1: Planar Faults
We study dynamic rupture propagation on flat faults using 2D plane strain models featuring strongly rate-weakening fault friction (in a rate-and-state framework) and off-fault Drucker–Prager viscoplasticity. Plastic deformation bounds stresses near the rupture front and limits slip velocities to ∼10 m=s, a bound expected to be independent of earthquake magnitude. As originally shown for rupture...
متن کاملRupture modes in laboratory earthquakes: Effect of fault prestress and nucleation conditions
[1] Seismic inversions show that earthquake risetimes may be much shorter than the overall rupture duration, indicating that earthquakes may propagate as self‐healing, pulse‐like ruptures. Several mechanisms for producing pulse‐like ruptures have been proposed, including velocity‐weakening friction, interaction of dynamic rupture with fault geometry and local heterogeneity, and effect of bimate...
متن کاملEarthquake Ruptures on Rough Faults
Natural fault surfaces exhibit roughness at all scales, with root-mean-square height fluctuations of order 10−3 to 10−2 times the profile length. We study earthquake rupture propagation on such faults, using strongly rate-weakening fault friction and offfault plasticity. Inelastic deformation bounds stresses to reasonable values and prevents fault opening. Stress perturbations induced by slip o...
متن کاملEarthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 2: Nonplanar Faults
Observations demonstrate that faults are fractal surfaces with deviations from planarity at all scales. We study dynamic rupture propagation on self-similar faults having root mean square (rms) height fluctuations of order 10 3 to 10 2 times the profile length. Our 2D plane strain models feature strongly rate-weakening fault friction and off-fault Drucker–Prager viscoplasticity. The latter boun...
متن کاملHeating and weakening of faults during earthquake slip
[1] Field observations of mature crustal faults suggest that slip in individual events occurs primarily within a thin shear zone, <1–5 mm, within a finely granulated, ultracataclastic fault core. Relevant weakening processes in large crustal events are therefore suggested to be thermal, and to involve the following: (1) thermal pressurization of pore fluid within and adjacent to the deforming f...
متن کامل